

EdelstahlWellschläuche

- ► Einführung 4.1
- Berechnung und Herstellung | 4.2
 Zulässige Längenabweichungen | 4.2
 Lebensdauer | 4.2
 Nenndruck | 4.2
 Druck-Abminderungsfaktoren | 4.3
- ► Typen-Übersicht | 4.3 Edelstahl-Wellschläuche | 4.3 Abgas- und Absaugschläuche | 4.5
- ► Einstufung gem. DGRL 97/23/EG | 4.7
- ► Anschlussteile 4.9
- Wellschläuche in Sonderausführung | 4.18
 Edelstahl-Wellschläuche mit PTFE-Liner | 4.18
 Doppelschlauchleitung | 4.18
- ► Handhabungs- und Montagehinweise | 4.19
- Fallbeispiele | 4.21
 Statischer Ausgleich von Lateralversatz | 4.21
 Aufnahme von Dehnungen | 4.22
 Aufnahme von Bewegungen | 4.25
 Aufnahme von Schwingungen | 4.28

Einführung

Flexible Rohrverbindungen in Form von Schlauchleitungen und Kompensatoren aus Edelstahl sind wesentliche und unverzichtbare Elemente der Rohrleitungstechnik. Als Fachfirma mit langjähriger Produkt- und Markterfahrung bieten wir auf diesem Gebiet ein umfassendes Programm hochwertiger Ausführungen für alle industriellen Anwendungsgebiete.

ROTH Edelstahl-Wellschläuche sind universell einsetzbar für viele Chemikalien, Dampf, Wasser, Öl, Gas, Vakuum, zur Aufnahme von Dehnungen, Hubbewegungen, Schwingungen, zum Ausgleich von Montageungenauigkeiten, als Lösch- und Ladeschläuche für Tankwagen, u.v.m.

Neben unseren Standardtypen SE111 und SE112 sind auch Sonderausführungen mit drei Umflechtungen, äußerer Schutzspirale u. a. lieferbar. Es handelt sich in jedem Fall um hochwertige Wellschläuche, bei denen auch die Umflechtung, falls erforderlich, ausschließlich aus Edelstahldraht geliefert wird. Ebenso bestehen die Endschutzhülsen grundsätzlich aus Edelstahl, die Anschlußteile werden WIG angeschweißt.

Die Lebensdauer von Schläuchen und Kompensatoren ist abhängig von verschiedenen Faktoren wie:

- Betriebsdruck:
- Druckstößen;
- Temperatur;

- ▶ Einbauverhältnissen;
- Bewegungsgröße;
- Bewegungsfrequenz.

Hinzu kommen erschwerende Beanspruchungen durch aggressive Medien, falschen Einbau, Torsionsbewegungen, unsachgemäße Handhabung, usw.

•

Berechnung und Herstellung

Unter Laborbedingungen wurden wesentliche Zusammenhänge einer theoretischen Lebensdauer ermittelt. Für die tatsächlich zu erwartende Lebensdauer muss im Einzelfall je nach Beanspruchung oder Ausfallrisiko mit einem mehr oder weniger großen Sicherheitsfaktor gerechnet werden.

Flexible Wellschläuche, enggewellt, aus stumpfgeschweißtem Rohr gefertigt Werkstoffe: 1.4541 (AISI 321), 1.4301 (AISI 304), 1.4404 (AISI 316L), 1.4571 (AISI 316Ti). Der für unsere Standard-Wellschläuche verwendete Werkstoff ist 1.4404 (AISI 316L). Andere Werkstoffe auf Anfrage.

Zulässige Längenabweichungen

Bitte beachten Sie unsere Montagehinweise, damit eine möglichst lange Lebensdauer erreicht werden kann.

Nennlänge NL [mm]	zul. Längentoleranz
NL < 500	+ 7 / - 3 [mm]
NL > 501	+ 3 % / - 1 % (ISO 10380)

Lebensdauer

Nach DIN EN ISO 10380 wird die Lebensdauer einer Schlauchleitung festgelegt auf einen Mindestwert von 8000 und einen Mittelwert von 10000 Lastwechseln. Bis DN100 wird als Referenzprüfung der U-Bogen, ab DN 100 die Querkraftbiegung herangezogen, beide jeweils bei ungeschmiertem Geflecht.

Die Betriebsbedingungen Druck, Temperatur, Einbausituation (Radius und Geometrie), dynamische Beanspruchung und Durchströmsituation haben ebenso Auswirkung auf die Lebensdauer wie Montage, Handhabung, Lagerung und Korrosionsverhalten nach innen und außen. Lebensdauervoraussagen basieren vielfach auf empirisch ermittelten Erfahrungswerten. Deswegen sollte grundsätzlich bei allen nichtstatischen Einsatzbedingungen (wie z.B. Bewegungen, Strömungsund Druckpulsationen) der Hersteller herangezogen werden zur Festlegung einer betriebgerechten Einbau- und Schlauchkonfiguration.

Nenndruck

Die Anforderungen der EG-Druckgeräterichtlinie 97/23/EG werden eingehalten. Sonderausführungen mit erhöhter Druckbeständigkeit auf Anfrage. In der Tabelle auf Seite 4.4 finden Sie die Angaben zur Druckbeständigkeit aller verfügbaren Typen und Nennweiten.

Bei PN ohne Geflecht	Bei PN mit Geflecht
Längendehnung unter 1% bei 1,5xPN.	Sicherheit gegen Bruch der Umflechtung mind. 4-fach, gem. ISO 10380.

Druck-Abminderungsfaktoren

Der maximal zulässige Betriebsdruck für einen Kompensator oder Wellschlauch wird anhand der Nenndruckstufe und des Abminderungsfaktors mit folgender Formel berechnet:

$$p_w = PN \cdot ft$$

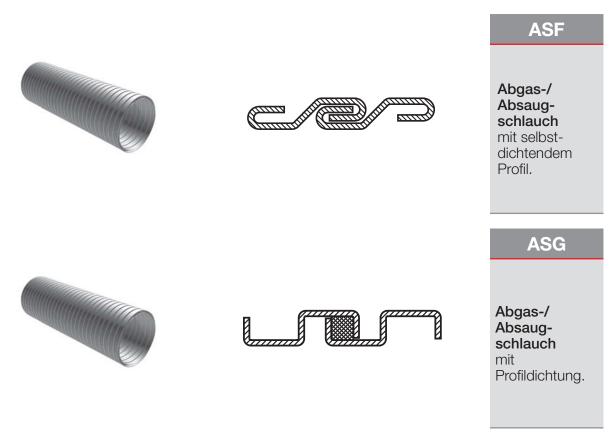
Die Abminderungsfaktoren bei unterschiedlichen Materialien und Temperaturen finden Sie in der folgenden Tabelle:

	Temperatur [°C]												
Werkstoff	-200 / -20	20	50	100	150	200	250	300	350	400	450	500	550
						Fakt	tor ft						
1.4301	1,0	1,0	0,90	0,73	0,66	0,60	0,55	0,51	0,49	0,48	0,46	0,46	0,46
1.4306	1,0	1,0	0,89	0,72	0,64	0,58	0,54	0,50	0,48	0,46	0,44	0,43	0,43
1.4541	1,0	1,0	0,93	0,83	0,78	0,74	0,70	0,66	0,64	0,62	0,60	0,59	0,58
1.4401	1,0	1,0	0,91	0,78	0,70	0,65	0,61	0,57	0,55	0,53	0,52	0,51	0,50
1.4404	1,0	1,0	0,90	0,73	0,67	0,61	0,58	0,53	0,51	0,50	0,49	0,47	0,47
1.4571	А	1,0	0,92	0,80	0,76	0,72	0,68	0,64	0,62	0,60	0,59	0,58	0,58
Stahl	_	1,0	0,98	0,90	0,89	0,86	0,82	0,76	0,73	0,70	0,41	0,24	_

Typen-Übersicht

Edelstahl-Wellschläuche

Unser Standard-Programm an Edelstahl-Wellschläuchen besteht aus drei unterschiedlichen Ausführungen, die sich über die Anzahl der Umflechtungen definieren.


In der folgenden Tabelle finden Sie die technischen Daten unserer drei Typen Edelstahl-Wellschläuche.

DN [mm]/[inch]	Тур	Berstdruck [bar]	Betriebs- druck bei 3-facher Sicherheit [bar]	Betriebs- druck bei 4-facher Sicherheit [bar]	Nenndruck (ISO 10380) [bar]	Biege- radius statisch [mm]	Biege- radius dynamisch [mm]	Gewicht [g/m]
	110	-	-	18	16	25	100	70
6 1/4	111	600	200	150	150	25	100	155
	112	864	288	216	150	_	110	260
	110	_	_	13	10	25	120	110
8 1/4	111	528	176	132	100	25	120	215
	112	766	253	191	150	_	135	350
	110	_	_	9	6	35	130	110
10 3/8	111	400	133	100	100	35	130	280
	112	500	164	125	100	_	145	490
	110	_	_	7	6	45	160	130
12 1/2	111	280	93	70	65	45	160	330
	112	410	136	105	100	_	175	580
	110	-	_	5	4	50	180	150
15 5/8	111	256	85	64	65	50	180	360
	112	420	140	105	100	_	200	630
	110	_	_	3	2,5	70	200	250
20 3/4	111	172	57	43	40	70	200	540
	112	310	103	77	65	_	220	910
	110	-	_	2,5	2,5	80	220	320
25 1	111	196	65	49	40	80	220	800
	112	290	96	72	65	_	245	1410
	110	_	_	2	0,5	100	270	450
32 1 1/4	111	140	46	35	25	100	270	1000
	112	240	80	60	50	_	300	1700
	110	_	_	2	0,5	130	300	520
40 1 1/2	111	152	50	38	25	130	300	1250
	112	230	76	57	50	_	330	2180
	110	_	_	1	0,5	155	350	900
50 2	111	104	34	26	25	155	350	1650
	112	180	60	45	40	_	385	2640
	110	_	_	0,5	0,5	200	410	1020
65 2 1/2	111	96	32	24	20	200	410	2380
	112	152	50	38	25	_	450	4090
	110	_	_	0,5	0,5	220	450	1460
80 3	111	72	24	18	16	220	450	2600
	112	112	37	28	25	_	500	4210
	110	_	_	0,5	0,5	270	560	1900
100 4	111	64	21	16	16	270	560	3450
	112	104	34	26	25	_	620	5500
	110	_	_	0,5	0,5	_	660	2980
125 5	111	48	16	12	10	_	660	5800
	112	80	26	20	20	_	730	9480
	110	_		0,5	0,5	_	815	6290
150 6	111	40	13	10	10	_	815	8200
	112	64	21	16	16	_	900	11120
	110	_	-	0,5	0,5	_	1015	8210
200 8	111	32	10	8	6	_	1015	11500
	112	48	16	12	10	_	1120	16270
	110	-	-	0,5	0,5	_	1200	13160
250 10	111	24	8	6	6	_	1200	17250
200 10	112	40	13	10	10	_	1320	23470
* Condorobr		n und arößere F						

^{*} Sonderabmessungen und größere Durchmesser auf Anfrage (bis DN400). Änderungen vorbehalten.

Abgas- und Absaugschläuche

Bei unseren ROTH Abgasschläuchen handelt es sich um eine spezielle Art Flexschlauch für den drucklosen Einsatz zum Transport von Abgasen oder Abluft, oder als Schutzschlauch. Sie sind flexibel, wiederstandsfähig und einfach zu montieren. Gängige Anwendungen sind Heiß- und Kaltluft, Abgase, Dampf, Rauch, Staub oder Granulate.

Die Eigenschaften der einzelnen Typen ergeben sich aus der Materialwahl von Schlauch und Dichtungen. Der Typ ASF ist selbstdichtend, während für den Typ ASG eine der unten aufgeführten Dichtungsmaterialen gewählt werden kann:

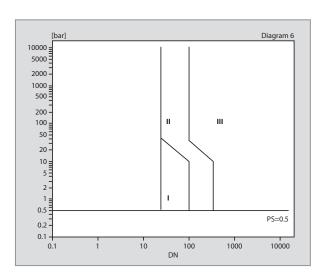
Typen- Übersicht	Typen- Werkstoff Übersicht		Temperatur- beständigkeit [°C]	Lieferlängen [m]	
ASF	Stahl (1.0330)	selbstdichtend	400	10 m ≤ DN100	
ASF	Edelstahl (1.4301)	selbstdichtend	600	5 m > DN100	
		Gummi	60		
	Stahl (1.0330)	Werkstoff	120	10 m ≤ DN100	
460		Keramik	400		
ASG		Gummi	60	5 m > DN100	
	Edelstahl (1.4301)	Werkstoff	120		
		Keramik	600		

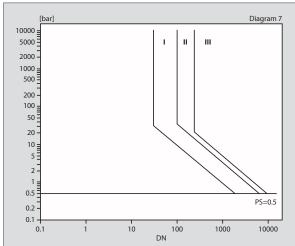
In der folgenden Tabelle finden Sie die technischen Daten und lieferbaren Abmessungen unserer Abgasschläuche.

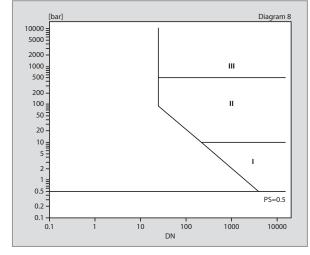
DN [mm]	Innen - Ø [mm]	Außen - Ø [mm]	Maßtoleranz [mm]	Min. Biegerradius [mm]	Gewicht [kg/m]
20	20,0	22,5	± 0,4	135	0,32
23	23,0	25,5	± 0,4	155	0,36
25	25,0	27,5	± 0,4	165	0,39
28	28,0	30,5	± 0,4	185	0,44
30	30,0	33,1	± 0,4	180	0,58
32	32,0	35,1	± 0,4	195	0,62
35	35,0	38,1	± 0,4	210	0,67
38	38,0	41,0	± 0,4	230	0,73
40	40,0	43,1	± 0,5	240	0,77
42	42,0	45,1	± 0,5	250	0,80
45	45,0	48,1	± 0,5	270	0,86
50	50,0	53,1	± 0,5	300	0,95
55	55,0	58,1	± 0,5	325	1,04
60	60,0	64,0	± 0,6	335	1,55
65	65,0	69,0	± 0,6	360	1,67
70	70,0	74,0	± 0,6	390	1,80
75	75,0	79,0	± 0,6	415	1,92
80	80,0	84,0	± 0,7	440	2,04
84	84,0	88,0	± 0,7	460	2,10
90	90,0	94,0	± 0,7	495	2,30
100	100,0	104,0	± 0,8	550	2,55
110	110,0	115,0	± 0,8	605	2,81
120	120,0	125,0	± 0,8	660	3,06
125	125,0	130,0	± 0,8	685	3,18
130	130,0	137,0	± 1,0	600	4,05
140	140,0	147,0	± 1,0	645	4,34
150	150,0	157,0	± 1,0	690	4,65
160	160,0	167,0	± 1,0	735	4,96
175	175,0	182,0	± 1,0	800	5,42
180	180,0	187,0	± 1,0	825	5,56
185	185,0	192,0	± 1,0	995	5,70
200	200,0	208,0	± 1,5	1085	7,74
225	225,0	233,0	± 1,5	1215	8,68
250	250,0	258,0	± 1,5	1350	9,60
275	275,0	283,0	± 1,5	1480	10,59
300	300,0	308,0	± 2,0	1615	11,49

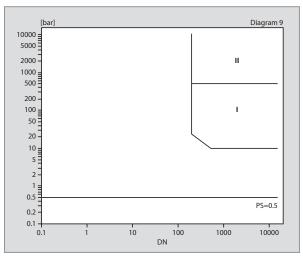
^{*} Sonderabmessungen und größere Durchmesser auf Anfrage. Änderungen vorbehalten.

Einstufung gem. DGRL 97/23/EG

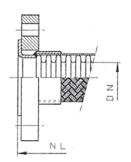

Einstufung der Module


X	nicht zutreffend: PS ≤ 0,5 bar
Υ	zutreffend: ohne CE- Kennzeichnung, gute Herstellerpraxis
Α	Kat. I: CE - Kennzeichnung + Interne Abnahme
A1	Kat. II: Kennzeichnung + Externe Abnahme


Einstufung der Medien

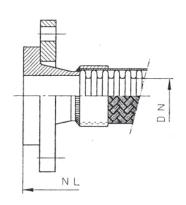

	M1	M2	M3	M4
Medium	Gr. 1 pD > 0,5 bar	Gr. 2 pD > 0,5 bar	Gr. 1 pD ≤ 0,5 bar	Gr. 2 pD ≤ 0,5 bar
	(Diagramm 6)	(Diagramm 7)	(Diagramm 8)	(Diagramm 9)

Gr. 1 = gefährlich; Gr. 2 = andere; pD = Dampfdruck.



DA			Betriebsdruck		Med	dium	
DN [mm]/[i	inch]	Тур	bei 4-facher Sicherheit [bar]	M1 Gr. 1 pD > 0,5	M2 Gr. 2 pD >0 ,5	M3 Gr. 1 pD ≤ 0,5	M4 Gr. 2 pD ≤ 0,5
		DGRL 97/	/23/EG	Diagramm 6	Diagramm 7	Diagramm 8	Diagramm 9
		110	18	Y	Y	Y	Y
6 1	1/4	111	150	Υ	Υ	Υ	Υ
		112	216	Υ	Υ	Υ	Υ
		110	13	Υ	Υ	Υ	Υ
8 1	1/4	111	132	Υ	Υ	Υ	Υ
		112	191	Υ	Υ	Υ	Υ
		110	9	Υ	Υ	Υ	Υ
10 :	3/8	111	100	Υ	Υ	Υ	Υ
		112	125	Υ	Υ	Υ	Υ
		110	7	Υ	Υ	Υ	Υ
12	1/2	111	70	Υ	Υ	Υ	Υ
		112	105	Υ	Υ	Υ	Υ
		110	5	Υ	Υ	Υ	Υ
15	5/8	111	64	Υ	Υ	Υ	Υ
		112	105	Υ	Υ	Υ	Υ
		110	3	Υ	Υ	Υ	Υ
20 3	3/4	111	43	Υ	Υ	Υ	Υ
		112	77	Υ	Υ	Υ	Υ
		110	2,5	Y	Y	Υ	Y
25	1	111	49	Y	Y	Y	Y
	•	112	72	Y	Y	Y	Y
		110	2	A	Y	Y	Y
32 1	1/4	111	35	A1 / A (30 bar)	Y	Y	Y
02 1	., .	112	60	A1 / A (30 bar)	Y	Y	Y
		110	2	A	Y	Y	Y
40 1	1/2	111	38	A1 / A (25 bar)	A / Y (25 bar)	Y	Y
10 1	.,_	112	57	A1 / A (25 bar)	A/Y(25 bar)	Y	Y
		110	1	A	Y	Y	Y
50	2	111	26	A1 / A (20 bar)	A / Y (20 bar)	Y	Y
00	_	112	45	A1 / A (20 bar)	A/Y(20 bar)	Y	Y
		110	0,5	A	Y	Y	Y
65 2	2 1/2	111	24	A1 / A (15 bar)	A / Y (15 bar)	Y	Y
00 2	- 1/2	112	38	A1 / A (15 bar)	A/Y(15 bar)	A1 / Y (30 bar)	Y
		110	0,5	Α	Y Y	Y Y	Y
80	3	111	18	A1 / A (12 bar)	A/Y(12 bar)	Y	Y
00	O	112	28	A1 / A (12 bar)	A/Y(12 bar)	A1 / Y (25 bar)	Y
		110	0,5	A	Y	Y Y	Y
100	4	111	16	A1 / A (10 bar)	A / Y (10 bar)	Y	Y
100		112	26	A1 / A (10 bar)	A/Y(10 bar)	A1 / Y (20 bar)	Y
		110	0,5	X	X	X	X
125	5	111	12	A1	A/Y(8 bar)	Y	Y
120	O	112	20	A1	A/Y(8 bar)	A1 / Y (16 bar)	Y
		110	0,5	X	X	X	X
150	6	111	10	A1	A / Y (6 bar)	Y	Y
100	J	112	16	A1	A/Y(6 bar)	A1 / Y (13 bar)	Y
		110	0,5	X	X	X	X
200	8	111	8	A1	A / Y (5 bar)	Y	Y
200	0	112	12	A1	A / Y (5 bar)	A1 / Y (10 bar)	Y
		110	0,5	X	X	X X	X
250	10	111	6		A / Y (4 bar)	Y	Y
200	10	112	10	A1 A1	A / Y (4 bar) A / Y (4 bar)		Y
		112	10	Al	A/1 (4 Dar)	A1 / A (10 bar)	I

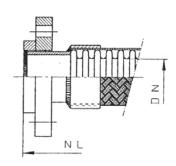
Anschlussteile



AE 201

Vorschweißbördel und drehbarer Flansch

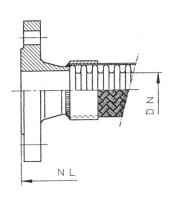
Bördel Edelstahl Flansch Stahl oder Edelstahl



AE 202

Vorschweißbund und drehbarer Flansch, auch mit Nut und Feder oder Vor- und Rücksprung

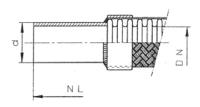
Bördel Edelstahl Flansch Stahl oder Edelstahl



AE 203

Bundstutzen, drehbarer Flansch

Bördel Edelstahl Flansch Stahl oder Edelstahl

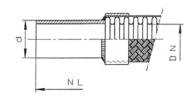


AE 204

Vorschweißflansch

Schweißende

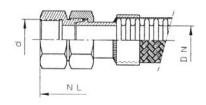
Stahl Edelstahl



AE 302

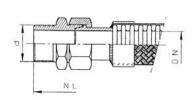
Rohranschluss Schneidring-Verschraubung

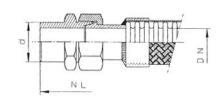
Stahl Edelstahl



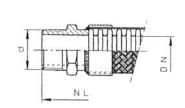
AE 401

Verschraubung 24°-Kegeldichtung mit Innengewinde


Stahl Edelstahl

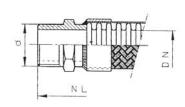

AE 403

Verschraubung 24°-Kegeldichtung mit Außengewinde



Verschraubung 24°-Kegeldichtung mit Schweißende

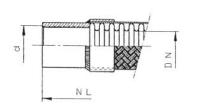
Stahl Edelstahl



AE 405

Nippel mit Sechskant und konischem Außengewinde DIN 2999

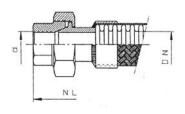
Stahl Edelstahl



AE 406

Nippel mit Sechskant und zylindr. Außengewinde DIN ISO 228

Stahl Edelstahl

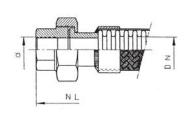


AE 408

Muffe mit Innengewinde

Verschraubung mit Innengewinde konisch dichtend

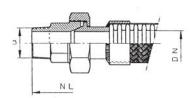
Temperguss / Stahl Stahl Edelstahl



AE 502

Verschraubung mit Innengewinde flach dichtend

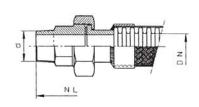
Temperguss/Stahl Stahl Edelstahl



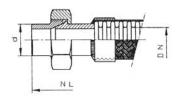
AE 503

Verschraubung mit Außengewinde konisch dichtend

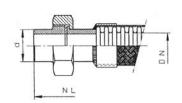
Temperguss / Stahl Stahl Edelstahl



AE 504

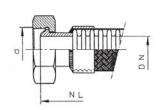

Verschraubung mit Außengewinde flach dichtend

Temperguss/Stahl Stahl Edelstahl



Verschraubung mit Schweißende konisch dichtend

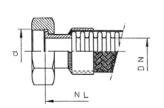
Stahl Edelstahl



AE 506

Verschraubung mit Schweißende flach dichtend

Stahl Edelstahl

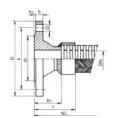


AE 507

Verschraubung Dichtkegel mit Überwurfmutter

Stahl Edelstahl

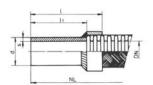
AE 508


Verschraubung mit Überwurfmutter flach dichtend

AE 202 AE 201 DN h1 h1 h3 10 29 9 55 35 (10) 1229 55 (10) 12 15 (35)38

10	20	9	00	(00) 00	(10) 12
20	32	12	60	40	(12) 14
25	40	20	60	40	(12) 14
32	40	20	60	(40) 42	(12) 14
40	40	20	60	(40) 45	(12) 14
50	40	20	65	45	(14) 16
65	40	20	65	45	(14) 16
80	50	25	75	50	16
100	50	25	75	(50) 52	18
125	60	30	80	(50) 55	18
150	70	30	90	(50) 55	(18) 20

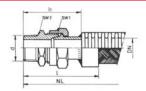
AE 203 AE 204



DN	The state of	h1	h3	l l	h1
10	75	55	(10) 12	55	35
15	75	55	(10) 12	55	(35) 38
20	80	60	(12) 14	58	(38) 40
25	85	65	(12) 14	58	(38) 40
32	90	70	(12) 14	60	(40) 42
40	95	75	(12) 14	62	(42) 45
50	95	75	(14) 16	65	45
65	100	80	(14) 16	65	45
80	110	85	16	75	50
100	115	90	16	77	52
125	120	90	18	85	55
150	135	95	(18) 20	95	55

D, k,d1, d2, b – Anschlussmaße entsprechend Flanschnorm und Nenndruckstufe (PN), siehe auch Seiten 5.5. Andere Abmessungen oder Normen (z.B. ASA) auf Wunsch. Maße in mm, Änderungen vorbehalten.

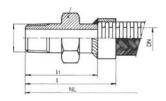
AE302

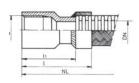

DN	d	s	- 1	l1	DN	d	s	1	11
6	8	1	70	50	6	8	1	48	28
10	13,5	1,8*	70	50	8	10	1	50	30
12	17,2	1,8*	70	50	10	12	1,5	50	30
15	21,3	2	70	50	12	15	1,5	52	32
20	26,9	2,6	75	55	15	18	1,5	52	32
25	33,7	2,6	80	60	20	22	1,5	56	36
32	42,4	2,6	85	65	25	28	1,5	60	40
40	48,3	2,6	90	70	32	35	2	65	45
50	60,3	2,9	90	70	40	42	2	65	45
65	76,1	2,9	95	75					
80	88,9	3,2	105	80					
100	114,3	3,6	110	85					
125	139,7	4	115	85					
150	168,3	4,5**	130	90					
200	219,1	6,3**	140	100					
250	273,0	6,3**	140	100					
300	323,9	7,1**	140	100					

^{*} Edelstahl: 1,6mm; ** Edelstahl: 4,0mm; *** Andere Rohrdurchmesser, -wandstärken oder -längen auf Wunsch.

AE401

AE403 / AE404

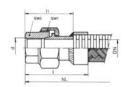


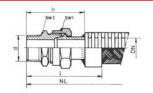

DN	d DIN2999		l1	SW1	SW2	I	l1	SW1	SW2
6	1/4	65	45	19	19	70	50	19	17
10	3/8	68	48	22	22	73	53	22	19
12	1/2	75	55	32	27	82	62	32	27
15	1/2	75	55	32	27	82	62	32	27
20	3/4	82	62	36	32	90	70	36	32
25	1	87	67	41	41	95	75	41	41
32	1 1/4	93	73	50	46	101	81	50	46
40	1 1/2	97	77	60	55	107	87	60	55
50	2	105	85	70	65	113	93	70	65

Andere Gewindeanschlüsse, z. B. metrisches Feingewinde, zyl. Außengewinde, NPT-Gewinde, usw. auf Wunsch lieferbar. Maße in mm, Änderungen vorbehalten.

AE405 / AE406

AE408

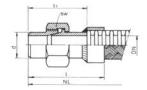




DN	d DIN2999	1	l1	SW	1	l1
6	1/4	45	25	17	45	25
10	3/8	48	28	19	46	26
12	1/2	51	31	22	54	34
15	1/2	51	31	22	54	34
20	3/4	52	32	27	56	36
25	1	60	40	36	63	43
32	1 1/4	63	43	46	68	48
40	1 1/2	66	46	50	68	48
50	2	70	50	60	76	56
65	2 1/2	80	60	80	85	65
80	3	100	75	95	96	71

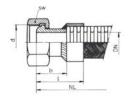
AE501 / AE502

AE503 / AE504



DN	d DIN2999	I	l1	SW1	SW2	ı	11	SW1	SW2
6	1/4	65	45	28	18	78	58	28	18
10	3/8	67	47	32	22	83	63	32	22
12	1/2	74	54	39	26	93	73	39	26
15	1/2	74	54	39	26	93	73	39	26
20	3/4	79	59	48	31	101	81	48	31
25	1	84	64	54	38	107	87	54	38
32	1 1/4	87	67	67	48	111	91	67	48
40	1 1/2	91	71	73	54	117	97	73	54
50	2	102	82	90	66	131	111	90	66

Maßtabelle Whitworth-Rohrgewinde DIN 2999 siehe Katalog-Seite 5.3. Andere Verschraubungsarten (z. B. Flachdichtung) oder Gewindeanschlüsse (z. B. NPT-Gewinde) auf Wunsch lieferbar Maße in mm, Änderungen vorbehalten.


AE505 / AE506

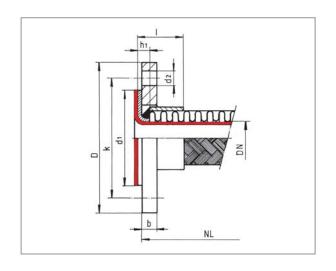
DN	d	1	l1	SW
10	13,5	62	42	27
12	17,2	65	45	27
15	21,3	74	54	32
20	26,9	80	60	41
25	33,7	87	67	50
32	42,4	95	75	60
40	48,3	101	81	70
50	60,3	114	94	85
65	76,1	122	102	100
80	88,9	132	107	120

AE507

AE508

	d		d	_		11
DN	M	SW	R	SW		"
6	14 × 1,5	17	1/4	17	44	24
8	16 × 1,5	19	3/8	20	44	24
10	$18 \times 1,5$	22	1/2	24	45	25
12	22 × 1,5	27	5/8	27	48	28
15	$26 \times 1,5$	32	3/4	32	49	29
20	30 × 2	36	1	41	50	30
25	36 × 2	41	11/4	50	55	35
32	45 × 2	50	11/2	55	55	35
40	52 × 2	60	2	65	55	35
50			21/2	75	65	45

Maße in mm, Änderungen vorbehalten.

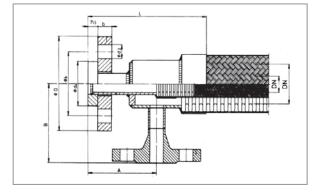

Wellschläuche in Sonderausführung

Edelstahl-Wellschläuche mit PTFE-Liner

Wellschläuche mit innerer PTFE-Auskleidung werden eingesetzt, wenn aufglatten Durchgang und/oder die chem. Beständigkeit von PTFE Wert gelegt wird. Größere Biegesteifigkeit und größere Biegeradien als bei normalen Wellschläuchen sind zu berücksichtigen.

ROTH Edelstahl-Wellschläuche Typ SE mit Umflechtung und innerem, glatten PTFE-Liner, lieferbar in den Nennweiten DN20 bis DN150. Die maximale Fertigungslänge beträgt 5000 mm, längere Abmessungen können durch das Verbinden kleinerer Einzellängen erreicht werden.

Lieferbare Anschlusstypen für Wellschläuche mit PTFE-Liner:


Anschlussart	Abdichtung	Mögliche Anschlusstypen
geflanscht	flach dichtend	AE201, AE202, AE203, AE204
geschraubt	flach dichtend	AE502, AE504, AE506, AE508

Doppelschlauchleitungen

Doppelschlauchleitungen bestehen aus zwei übereinanderliegenden Wellschläuchen: einem Innenschlauch als produktführende Hauptleitung und einem Außenschlauch. Beide Schläuche liegen in der Regel zwei Nennweitenschritte auseinander, so dass zwischen beiden Schläuchen ein Raum für Heiz- oder Kühlflüssigkeit bereit steht.

ROTH Doppelschlauchleitungen werden verwendet, um flüssige Medien in der Hauptleitung stets auf der benötigten Temperatur zu halten. Durch den Einsatz von Kühl- oder Wärmemitteln im Raum zwischen Innen- und Außenschlauch kann die Temperatur des Mediums zu jeder Zeit kontrolliert werden, auch an schwierigen oder engen Einsatzorten.

ROTH Doppelschlauchleitungen können mit allen gängigen Anschlüssen versehen werden. In der folgenden Tabelle finden Sie einige allgemeine Hinweise und Empfehlungen zu den möglichen Nennweiten und Abmessungen.

DN (Innenschlauch) Hauptleitung	DN (Außenschlauch) Nebenleitung	L	А	В
25	50	125	80	95
50	80	150	90	115
65	100	150	90	125
80	125	165	100	150
100	150	180	110	150

^{*} Maße in mm. Sonderabmessungen auf Anfrage.

Handhabungs- und Montagehinweise

ROTH Edelstahl-Wellschläuche sind Produkte von höchster Qualität. Sie gewährleisten einen zuverlässigen, langen und sicheren Betrieb. Voraussetzung hierfür sind neben der richtigen Produktauswahl jedoch auch die fachgerechte Montage. Die richtige Schlauchanordnung, sowie die Berücksichtigung aller Betriebsparameter sind entscheidend.

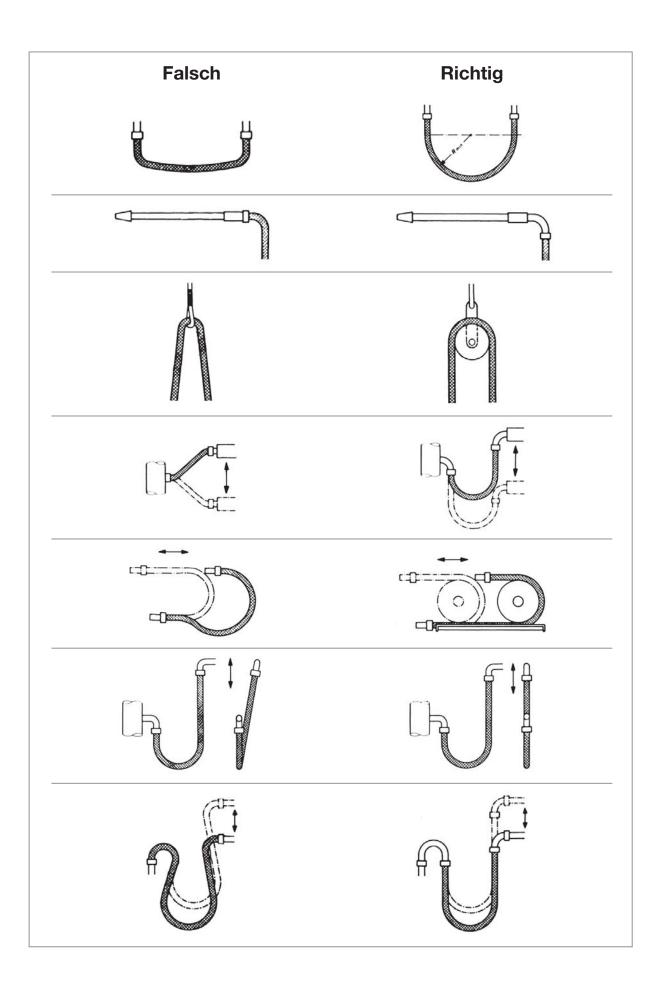
Bitte beachten Sie die folgenden allgemeinen Hinweise zum ordnungsgemäßen Einbau von Edelstahl-Wellschläuchen:

A. Äußere Beanspruchung.

Zerstörung des Geflechts oder Abrieb und Wanddickenreduktion des nicht umflochtenen Schlauches infolge Scheuerns an Kanten, Flächen oder am Boden vermeiden. Als Verschleißschutz können Außenwendel und Schutzagraffschläuche vorgesehen werden.

B. Nennlängen-Festlegung.

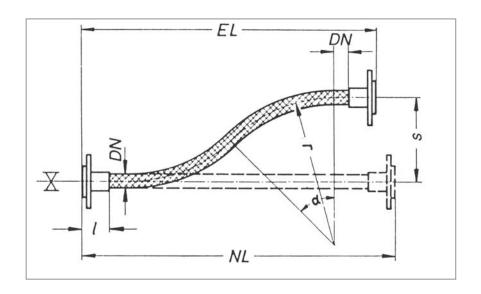
Nur unter Zugrundelegung des in den Tabellen angegebenen Mindestbiegeradius mit ausreichend groß bemessenen neutralen Enden, um Überbiegung des Schlauches und zu hohe Beanspruchung des Überganges vom Wellschlauch zur Armatur zu vermeiden.


C. Mindestbiegeradius.

Er ist aus den Tabellen auf den Seiten 4.4 zu entnehmen und darf nicht unterschritten werden. Die Lebensdauer einer Schlauchleitung kann durch Vergrößern des Radius erhöht werden.

D. Spannungsfreie Anordnung und Montage.

Die gebogene Schlauchleitung muss in der Ebene des Bewegungsablaufes liegen, sonst tritt auf den Schlauch zerstörend wirkende Torsion auf. Das gleiche gilt beim Einbau: Verschraubungen beim Anziehen stets gegenhalten, bei Flanschverbindungen einige Male zum spannungsfreien Ausrichten bewegen.


Die Beispiele auf der folgenden Seite zeigen typische Anordnungsfehler und deren Vermeidung.

Fallbeispiele

Statischer Ausgleich von Lateralversatz

Längenermittlung. Schlauchleitung S-förmig eingebaut, nur für statische Beanspruchung, nicht für Dehnungs- oder Schwingungsaufnahme.

s = Größe des Achsversatzes [mm]

r = Biegeradius [mm]

(entnehmen Sie die Werte aus den Tabellen auf Seite 4.4)

 $\alpha = Biegewinkel [°]$

I = Länge des Anschlussteils [mm]

DN = Schlauch-Nennweite [mm]

EL = Einbaulänge [mm]

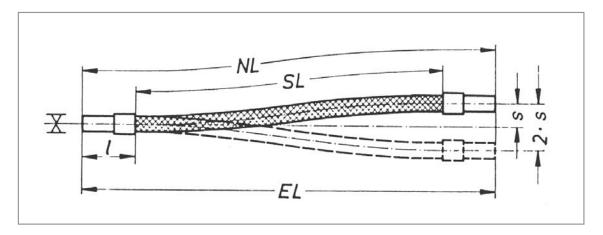
NL = Nennlänge [mm]

Der Biegewinkel α darf bei umflochtenen Schläuchen max. 45° nicht überschreiten:

$$NL = [(r \cdot \pi \cdot \alpha)/90] + 2(I + DN)$$

$$EL = 2r \cdot \sin \alpha + 2 (I + DN)$$

$$s = 2r(1 - \cos \alpha)$$


lst der errechnete Biegewinkel α größer als 45°, ist die Einbaulänge und Nennlänge nach folgenden Formeln zu berechnen:

$$EL = 2,414s + 2(I + DN)$$

 $NL = 2,68s + 2(I + DN)$

Aufnahme von Dehnungen

Beispiel 1

Längenermittlung für Metallschlauchleitungen mit lateraler Dehnungsaufnahme. Schlauchleitung rechtwinklig zur Bewegungsrichtung anordnen. Laterale Bewegungsaufnahme bis max. 100mm zulässig. Nicht für Schwingungen!

 $2 \cdot s = Gesamt-Lateralweg [mm]$

s = Lateralweg aus der Mittelachse [mm]

r = Biegeradius [mm]

(entnehmen Sie die Werte aus den Tabellen auf Seite 4.4)

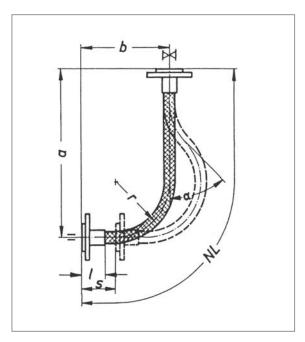
I = Länge des Anschlussteils [mm]

(die Werte sind den Tabellen Anschlussteile zu entnehmen)

SL = frei bewegliche Schlauchlänge [mm]

EL = Einbaulänge [mm]

NL = Nennlänge [mm]


$$EL = Einbaulänge \\ SL = Schlauchlänge \\ SL_{min} = minimale Schlauchlänge \\ NL = \sqrt{20 \cdot r \cdot s} + 2l \\ s = SL^2/20r \\ EL = 0,995NL \\ SL = NL - 2l \\ SL_{min} = 6s$$

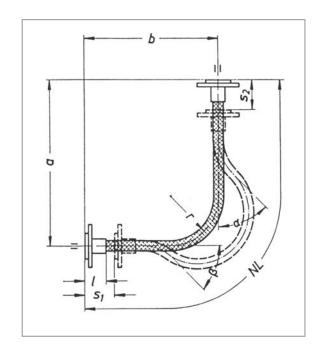
▶ Die Schlauchleitung so einbauen, dass in Endstellung keine Zugspannung auftritt.

Beispiel 2

Längenermittlung für Metallschlauchleitungen zum Einbau als 90°-Bogen zur Aufnahme von Dehnungen aus einer Richtung.

Nicht geeignet für Schwingungen!

- s = Dehnungsaufnahme [mm]
- a = Einbauabstand [mm]
- b = Einbauabstand [mm]
- r = Biegeradius [mm] (entnehmen Sie die Werte aus den Tabellen auf Seite 4.4)
- I = Länge des Anschlussteils [mm] (die Werte sind den Tabellen Anschlussteile zu entnehmen)
- a = Biegewinkel [°]
- NL = Nennlänge [mm]


NL =
$$0.035r \cdot \alpha + 1.57r + 21$$

 $a = r + (2r \cdot \sin \alpha) + 1$
 $b = r + r(0.035\alpha - 2\sin \alpha) + 1$
 $f_{\alpha} = s/r$
 $\alpha < 60^{\circ}$

f_a - Werte entnehmen Sie bitte der Biegewinkeltabelle auf Seite 4.24

▶ Beispiel 3

Längenermittlung für Metallschlauchleitungen zum Einbau als 90°-Bogen zur Aufnahme von Dehnungen aus 2 Richtungen.

Nicht geeignet für Schwingungen!

- s₁ = Dehnungsaufnahme [mm]
- s₂ = Dehnungsaufnahme [mm]
- a = Einbauabstand [mm]
- b = Einbauabstand [mm]
- r = Biegeradius [mm] (entnehmen Sie die Werte aus den Tabellen auf Seite 4.4)
- I = Länge des Anschlussteils [mm] (die Werte sind den Tabellen Anschlussteile zu entnehmen)
- $\alpha = Biegewinkel [°]$
- β = Biegewinkel [°]
- NL = Nennlänge [mm]

$$\begin{array}{l} NL = 0.035r \cdot (\alpha + \beta) + 1.57r + 2I \\ a = r + 2r \cdot sin\alpha + r(0.035\beta - 2sin\beta) + I \\ b = r + 2r \cdot sin\beta + r(0.035\alpha - 2sin\alpha) + I \\ f_{\alpha} = s_{1}/r \\ f_{\beta} = s_{2}/r \\ \alpha < 45^{\circ} \\ \beta < 45^{\circ} \end{array}$$

 f_{α} , f_{β} – Werte entnehmen Sie bitte der Biegewinkeltabelle auf Seite 4.24

Biegewinkeltabelle für 90°-Anordnung zur Bestimmung des Biegewinkels.

	0° – 3	30°		30° – 60°					
Biegewinkel α , β	Wir	ıkelfaktor f	_α , f _β	\mathbf{f}_{β} Biegewinkel α , β		ıkelfaktor f	₁ , f _β		
Grad\min.	0°	30°	60°	Grad\min.	0°	30°	60°		
0	0,0000	0,0001	0,0003	30	0,3151	0,3263	0,3377		
1	0,0003	0,0007	0,0012	31	0,3377	0,3493	0,3611		
2	0,0012	0,0019	0,0028	32	0,3611	0,3731	0,3853		
3	0,0028	0,0038	0,0050	33	0,3853	0,3977	0,4104		
4	0,0050	0,0063	0,0078	34	0,4104	0,4232	0,4363		
5	0,0078	0,0095	0,0113	35	0,4363	0,4495	0,4630		
6	0,0113	0,0133	0,0155	36	0,4630	0,4767	0,4906		
7	0,0155	0,0179	0,0204	37	0,4906	0,5048	0,5191		
8	0,0204	0,0231	0,0259	38	0,5191	0,5337	0,5484		
9	0,0259	0,0289	0,0322	39	0,5484	0,5634	0,5786		
10	0,0322	0,0355	0,0391	40	0,5786	0,5940	0,6096		
11	0,0391	0,0428	0,0468	41	0,6096	0,6255	0,6415		
12	0,0468	0,0509	0,0551	42	0,6415	0,6578	0,6743		
13	0,0551	0,0596	0,0643	43	0,6743	0,6910	0,7079		
14	0,0643	0,0690	0,0741	44	0,7079	0,7250	0,7424		
15	0,0741	0,0793	0,0847	45	0,7424	0,7599	0,7777		
16	0,0847	0,0903	0,0961	46	0,7777	0,7957	0,8139		
17	0,0961	0,1020	0,1082	47	0,8139	0,8323	0,8510		
18	0,1082	0,1145	0,1211	48	0,8510	0,8698	0,8889		
19	0,1211	0,1278	0,1347	49	0,8889	0,9082	0,9277		
20	0,1347	0,1418	0,1491	50	0,9277	0,9474	0,9673		
21	0,1491	0,1567	0,1644	51	0,9673	0,9874	1,0078		
22	0,1644	0,1723	0,1804	52	1,0078	1,0284	1,0491		
23	0,1804	0,1887	0,1972	53	1,0491	1,0701	1,0914		
24	0,1972	0,2059	0,2148	54	1,0914	1,1128	1,1344		
25	0,2148	0,2239	0,2332	55	1,1344	1,1563	1,1783		
26	0,2332	0,2428	0,2525	56	1,1783	1,2006	1,2230		
27	0,2525	0,2624	0,2725	57	1,2230	1,2457	1,2686		
28	0,2725	0,2829	0,2934	58	1,2686	1,2918	1,3150		
29	0,2934	0,3042	0,3151	59	1,3150	1,3386	1,3623		

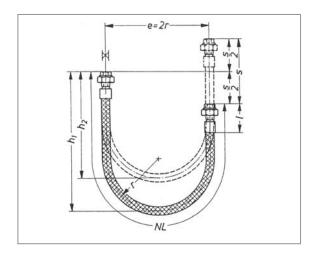
Der Biegewinkel darf 60° nicht überschreiten. Ist der errechnete Wert s/r größer als 1,3623, muss der Biegewinkel mit größerem Biegeradius r neu ermittelt werden.

 $f\alpha$, $f\beta$ = Winkelfaktor

r = Biegeradius [mm]

⁽entnehmen Sie die Werte aus den Tabellen auf Seite 4.4)

s = Dehnungsaufnahme [mm]


 $[\]alpha = Biegewinkel [°]$

 $[\]beta$ = Biegewinkel [°]

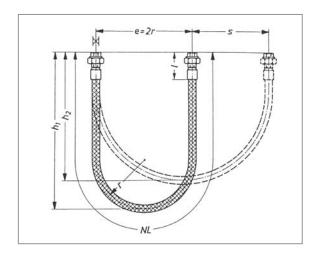
Aufnahme von Bewegungen

Beispiel 1

Längenermittlung für Metallschlauchleitungen zum Einbau als 180°-Bogen. Hub vertikal.

- r = Biegeradius [mm] (entnehmen Sie die Werte aus den Tabellen auf Seite 4.4)
- e = Einbauabstand [mm]
- I = Länge des Anschlussteils [mm] (die Werte sind den Tabellen Anschlussteile zu entnehmen)
- h₁ = max. Höhe des 180°-Bogens [mm]
- h₂ = min. Höhe des 180°-Bogens [mm]
- s = Hub [mm]
- NL = Nennlänge [mm]

$$NL = 4r + s/2 + 2I$$

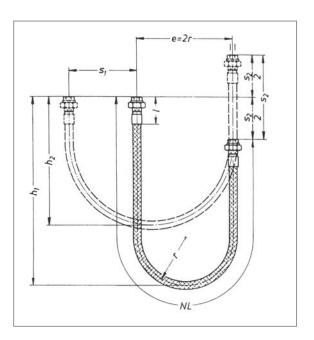

$$h_1 = 1,43r + s/2 + I$$

$$h_2 = 1,43r + I$$

Die gewählten Biegeradien sind mit einem Lebensdauerfaktor f_{si} zwischen 1,5 und 4 je nach Betriebsbedingungen und gewünschter Lebensdauer zu multiplizieren.

▶ Beispiel 2

Längenermittlung für Metallschlauchleitungen zum Einbau als 180°-Bogen. Hub horizontal.


- r = Biegeradius [mm] (entnehmen Sie die Werte aus den Tabellen auf Seite 4.4)
- e = Einbauabstand [mm]
- I = Länge des Anschlussteils [mm] (die Werte sind den Tabellen Anschlussteile zu entnehmen)
- h₁ = max. Höhe des 180°-Bogens [mm]
- h₂ = min. Höhe des 180°-Bogens [mm]
- s = Hub [mm]
- NL = Nennlänge [mm]

$$NL = 4r + 1,57s + 2I$$

 $h_1 = 1,43r + 0,785s + I$
 $h_2 = 1,43r + s/2 + I$

 Die gewählten Biegeradien sind mit einem Lebensdauerfaktor f_{si} zwischen 1,5 und 4 je nach Betriebsbedingungen und gewünschter Lebensdauer zu multiplizieren.

▶ Beispiel 3

Längenermittlung für Metallschlauchleitungen zum Einbau als 180°-Bogen. Hub vertikal und horizontal (beide Schenkel je eine Bewegungsrichtung).

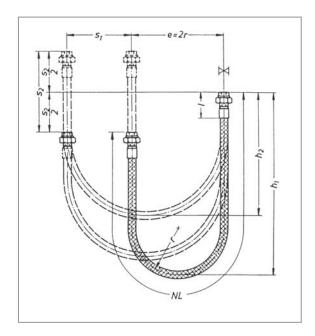
- r = Biegeradius [mm] (entnehmen Sie die Werte aus den Tabellen auf Seite 4.4)
- I = Länge des Anschlussteils [mm] (die Werte sind den Tabellen Anschlussteile zu entnehmen)

h, = max. Höhe des 180°-Bogens [mm]

h₂ = min. Höhe des 180°-Bogens [mm]

 $s_1 = \text{Hub horizontal [mm]}$

s, = Hub vertikal [mm]


NL = Nennlänge [mm]

$$\begin{aligned} NL &= 4r + 1,57s_{_1} + s_{_2}/2 + 2I \\ h_{_1} &= 1,43r + 0,785s_{_1} + s_{_2}/2 + I \\ h_{_2} &= 1,43r + s_{_1}/2 + I \end{aligned}$$

Die gewählten Biegeradien sind mit einem Lebensdauerfaktor f_{si} zwischen 1,5 und 4 je nach Betriebsbedingungen und gewünschter Lebensdauer zu multiplizieren.

▶ Beispiel 4

Berechnung von Metallschlauchleitungen zum Einbau als 180°-Bogen zur Aufnahme von Bewegungen aus zwei Richtungen für große Amplitude und kleine Frequenz. Hub vertikal und horizontal (ein Schenkel fest, ein Schenkel in beiden Richtungen bewegt).

- r = Biegeradius [mm] (entnehmen Sie die Werte aus den Tabellen auf Seite 4.4)
- I = Länge des Anschlussteils [mm] (die Werte sind den Tabellen Anschlussteile zu entnehmen)

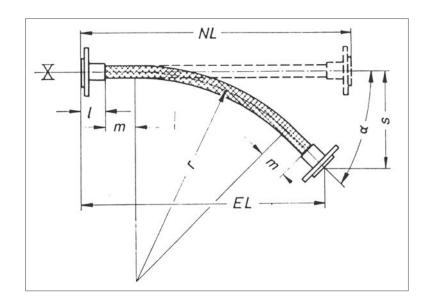
h₁ = max. Höhe des 180°-Bogens [mm]

h₂ = min. Höhe des 180°-Bogens [mm]

s₁ = Hub horizontal [mm]

s = Hub vertikal [mm]

NL = Nennlänge [mm


$$\begin{aligned} NL &= 4r + 1,57s_1 + s_2/2 + 2I \\ h_1 &= 1,43r + 0,785s_1 + s_2/2 + I \\ h_2 &= 1,43r + s_1/2 + I \end{aligned}$$

 Die gewählten Biegeradien sind mit einem Lebensdauerfaktor f_{si} zwischen 1,5 und 4 je nach Betriebsbedingungen und gewünschter Lebensdauer zu multiplizieren.

▶ Beispiel 5

Längenermittlung für Metallschlauchleitungen zur angularen Bewegungsaufnahme. Der Schlauchbogen muss in der Bewegungsebene liegen.

Nicht geeignet für Schwingungen!

 α = bend angle in $^{\circ}$

r = Biegeradius [mm]

(entnehmen Sie die Werte aus den Tabellen auf Seite 4.4)

I = Länge des Anschlussteils [mm]

(die Werte sind den Tabellen Anschlussteile zu entnehmen)

m = Längenzugabe [mm]

(Werte aus folgenden Tabelle einsetzen)

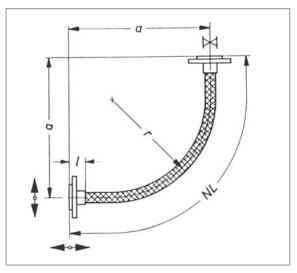
s = Abstand der Abwinklung [mm]

EL = Einbaulänge [mm]

NL = Nennlänge [mm]

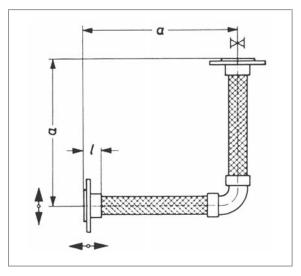
NL =
$$[(r \cdot \pi \cdot \alpha)/180] + 2(l + m)$$

EL = $r \cdot \sin \alpha + (l + m)(1 + \cos \alpha)$
s = $r(1 - \cos \alpha) + (l + m)\sin \alpha$


Nennweitenbereich [mm]	≥ 10	13 – 25	32 – 40	50 – 65	80 – 100	125 – 150	200 – 300
Längenzugabe 'm' [mm]	20	40	60	80	120	160	250

Aufnahme von Schwingungen

▶ Beispiel 1

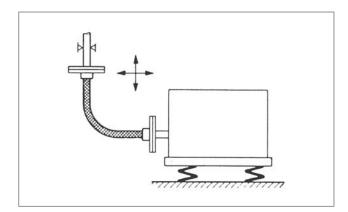

Längenermittlung von Metallschlauchleitungen zum Einbau als 90°-Bogen zur Schwingungsaufnahme.

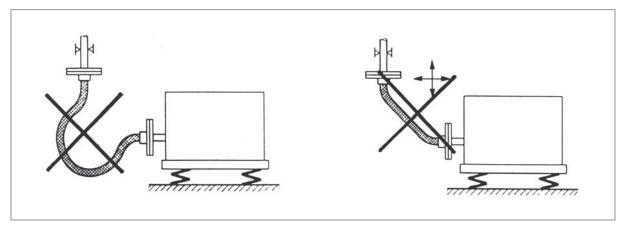
► Einbauform 1 (DN15-100), 90°-Bogen

NL = 2.3r + 2Ia = 1.365r + I

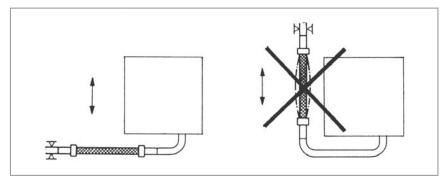
► Einbauform 2 (DN125-300), 90°-Winkel

Zulässige Amplitude im Dauerbetrieb: ± 1 mm in Normalfall max. ± 10 mm beim An- / Abstellen


Hinweis: Bogen und Winkel nie stehend, sondern stets hängend anordnen, wie im Beispiel gezeigt.


Typ SE111		Einbauform 1 90°-Bogen										baufor °-Winl		
DN	15	20	25	32	40	50	65	80	100	125	150	200	250	300
r	110	150	170	200	240	280	300	350	400	-	-	-	-	-
а	200	255	285	340	400	460	490	575	635	700	800	950	1100	1300
 max	50	50	55	70	75	80	80	95	95	120	130	140	150	160
NL	350	450	500	600	700	800	850	1000	1100	-	-	-	-	-

Maße in mm.


▶ Beispiel 2

▶ 90°-Bogen mit zulässigem Biegeradius und ausreichender Schlauchlänge einbauen. Überbiegen und Strecken des Schlauchbogens ist nicht zulässig!

 Schlauch rechtwinklig zur Schwingungsrichtung einbauen.

Zur Aufnahme von zwei- oder dreidimensionalen Schwingungen Schlauchleitung als 90°-Winkelleitung einbauen. Axiale Schwingungen werden von Schläuchen nicht ohne Schaden aufgenommen.

